

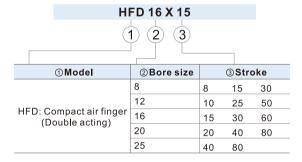
Compact air gripper——HFD Series

Compendium of HFD Series

Gripping force and stroke

Bore size		8			12			16			20		2	5
Stroke (mm)	8	15	30	10	25	50	15	30	60	20	40	80	40	80
Gripping force per finger Effective value(N)		19			48			90			141		21	10
Weight (g)	88.8	105.7	153.4	226.7	303.7	441.9	505.3	642.3	946.7	1019.6	1319.1	1983.3	1693.7	2558.9

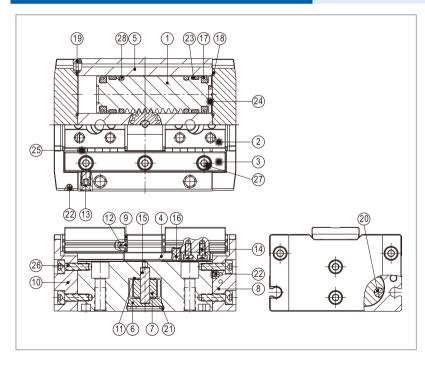
[Note] The gripping force in the above table is in the working pressure of 0.5MPa, and with a gripping point of L=20mm.



Symbol

Ordering code

Specification


Bore siz	e (mm)	8	12	16	20	25	
Acting	ng type Double acting				9		
Flu	uid	Air(to be filtered by 40µm filter element)					
0	Ф8		0.25~0.7MI	Pa(36~100psi)(2.5~7bar)		
Operating pressure	Ф12		0.2~0.7M	Pa(29~100psi	i)(2~7bar)		
pressure	Ф16/20/25	0.15~0.7MPa(22~100psi)(1.5~7bar)					
Proof p	Proof pressure		1.2MPa(175psi)(12bar)				
Tempe	rature	-20~70°C					
Lubrio	cation	Not required					
Repeatab	ility mm	±0.05					
Max frequency		Longer stroke:60(c.p.m)					
wax. ire	quency	Middle and short stroke:120(c.p.m)					
Sensor switches		CMSH, DMSH, EMSH					
Port	size	M3×0.5 M5×0.8					

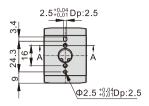
Note) Refer to P365 for detail of sensor switch.

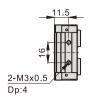
Product feature

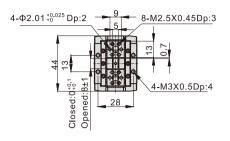
- 1. The double-track design increases the load span and the bending moment (Mr) load is better.
- 2. Double piston drive, double output, for greater clamping force.
- 3. The bottom of the body is provided with a positioning hole which can improve the precision and the consistency of repeated dismounting and positioning.
- 4. The jaw rails are made of stainless steel for high rigidity and corrosion resistance.
- 5. Can be fixed in four directions and has a high degree of freedom.
- 6. The overall height is reduced by about 50% compared to the parallel jaw product of the same clamping force, effectively reducing the device space and sloshing moment.

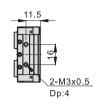
Inner structure and material of major parts

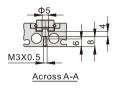
NO.	Item	Material
1	Rack	Stainless steel
2	Jaws	Stainless steel
3	Guide	Stainless steel
4	Joint arm	Cr-Mo steel
5	Body	Aluminum alloy
6	Rack end cap	Aluminum alloy
7	Gear	Cr-Mo steel
8	Back cover	Aluminum alloy
9	Baffle	Stainless steel
10	Front cover	Aluminum alloy
11	Plastic bearing	Wear resistant material
12	Screw	Stainless steel/Alloy steel
13	Screw	Alloy steel
14	Screw	Alloy steel
15	Pin	Bearing steel
16	Pin	Bearing steel
17	Piston seal	NBR
18	O-ring	NBR
19	O-ring	NBR
20	Magnet	Rare earth material
21	C clip	Spring steel
22	Steel ball	Stainless steel
23	Wear ring	Wear resistant material
24	Bumper	TPU
25	Steel ball	Bearing steel
26	Bolt	Alloy steel/Stainless steel
27	Bolt	Alloy steel/Stainless steel
28	O-ring	NBR

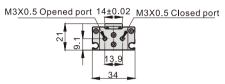

Note: HFD8 No. 12 and No. 27 are made of alloy steel.

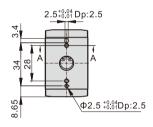


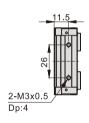


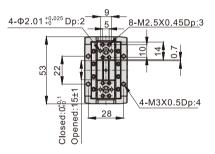

Dimensions

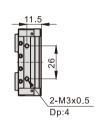

HFD8X8

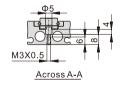


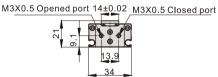


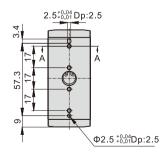


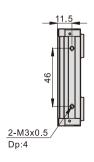


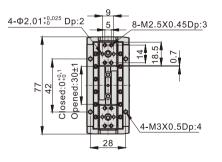


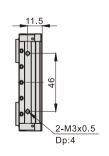

HFD8X15

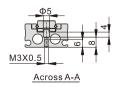


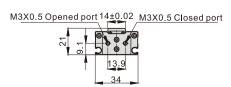


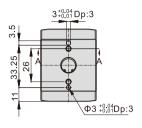


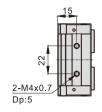


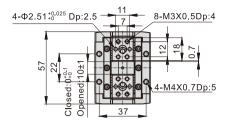


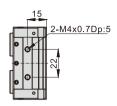

HFD8X30

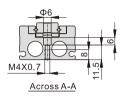


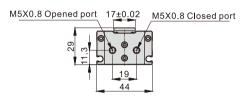


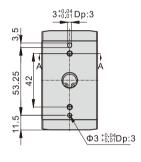


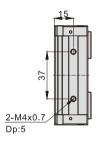


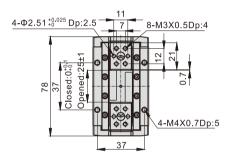

AITTAE

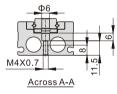

HFD12X10

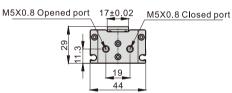


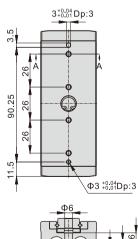


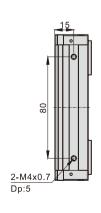


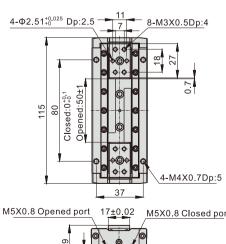


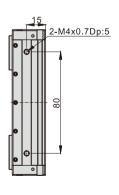

HFD12X25

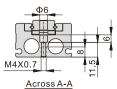


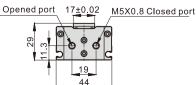


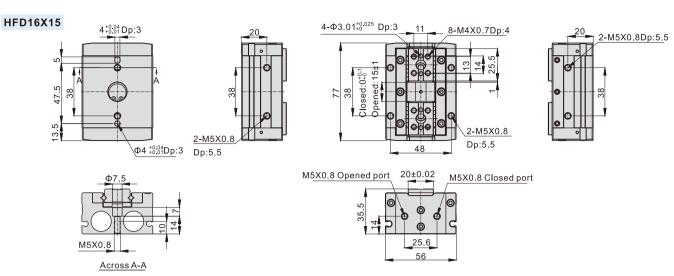


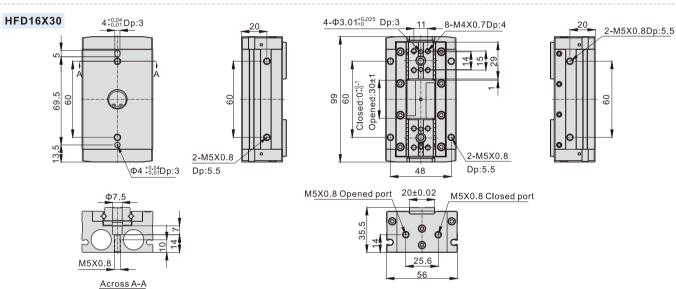


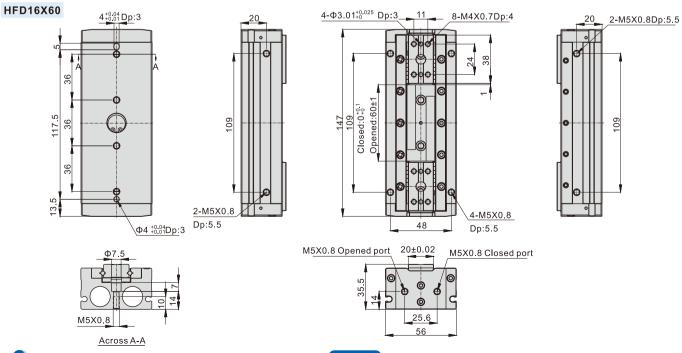



HFD12X50

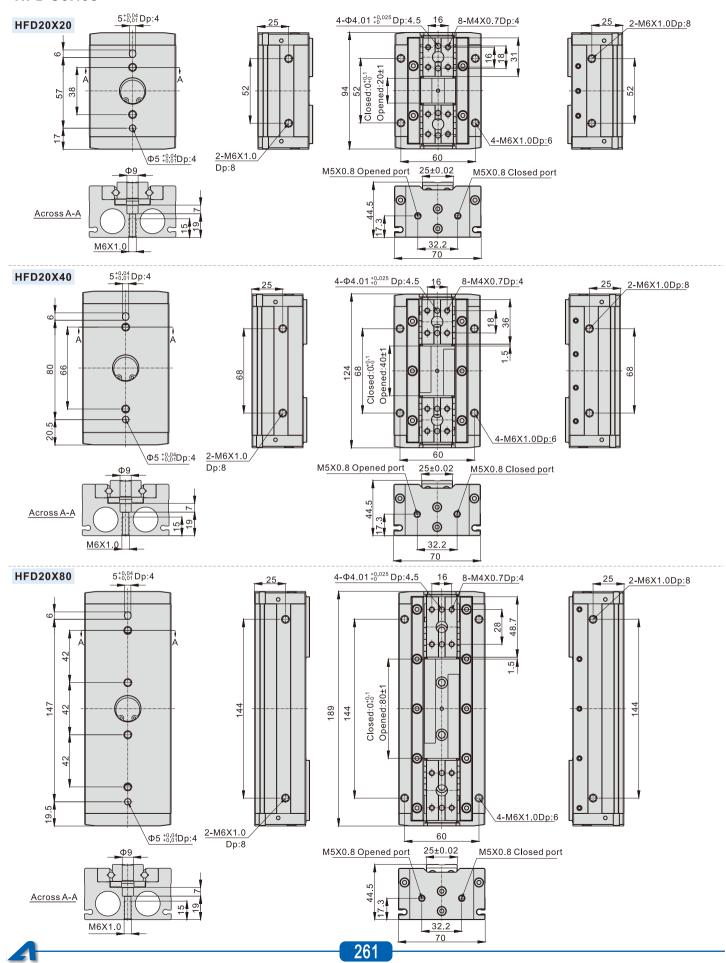






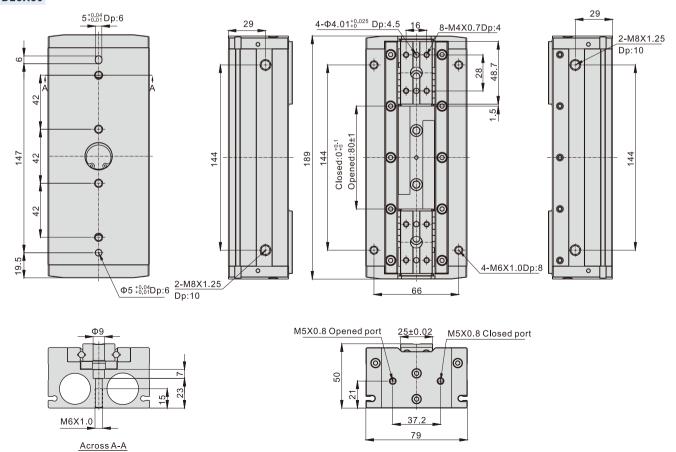

Compact air gripper

HFD Series



Compact air gripper

HFD Series



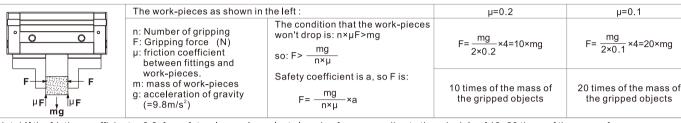
HFD25X40

HFD25X80

How to select product

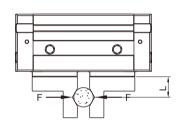
Please select pneumatic finger according to the following steps:

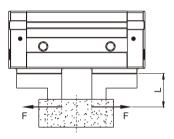
1) The selection of the effective gripping force



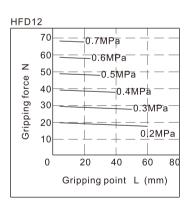
②The confirmation of the gripping point

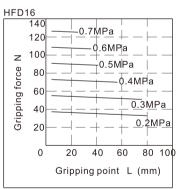
The confirmation of the external force put on the gripping jaw

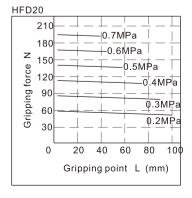

- 1. The selection of the gripping force
 - The gripping work-pieces shown below, on the impact condition of ordinary handling state, taking safety coefficient a=4, have a gripping force that is more than 10-20 times of the mass of the gripped objects.

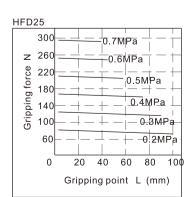

Note) If the friction coefficientµ>0.2, for safety, please also select clamping force according to the principle of 10~20 times of the mass of the clamped objects. As for large acceleration and shock, it requires for greater safety coefficient.

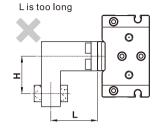
1.1) The actual gripping force must be within the effective gripping forces of different pneumatic fingers specifications shown in the below chart.

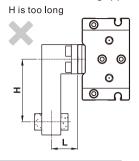

Closed gripping force



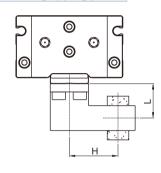

Opened gripping force

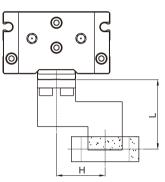


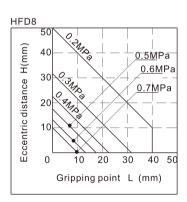


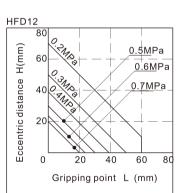


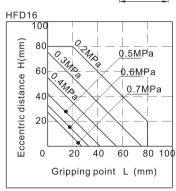
- 2. The selection of the gripping point
- 2.1) Please select the gripping point within the limited field shown below.

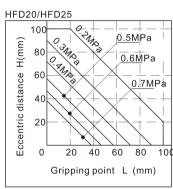

Over the limits, gripping jaws would be subjected to excessive torque loads, and lead to short life of the air gripper.



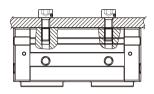



The range of the closed gripping points

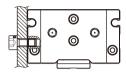




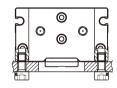
- 2.2) In the allowable range of gripping point, it is better to design for short and light fittings. If the fittings are long and heavy, the inertia force when the finger is open and close will become larger, and the performance of gripping jaw will be degraded, at the same time it will affect the life.
- 3. The confirmation of the external force put on the gripping jaw.


	Bore size	The allowed vertical loads Fv(N)		permis rque(N Mv		The calculation of allowable forces when moment loads work	Examples of calculation
Mp Mr	8	58	0.26	0.26	0.64		In the guide rail of HFD12, the external force of the
Fvl Mp My Mr	12	98	0.68	0.68	1.68	Allowable load(N) M(Maximum permissible	pitching moment static loads put on the point of L=30mm is f=10 N, 0.68
	16	176	1.4	1.4	3.36	$= \frac{\text{moment})(\text{N.m})}{\text{L} \times 10^{-3}}$	Allowable load $F = \frac{0.08}{30 \times 10^{-3}}$ = 22.7(N)
[Note] The loads and torque values of said	20	294	2	2	4.8	Unit conversion√ constant	Actual load f=10(N) <22.7(N)
are all static values. L=Distance to load point(mm).	25	294	2	2	4.8		To meet the using requirements

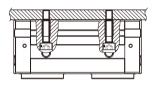
Installation and application


- 1. Due to the abrupt changes, the circuit pressure is low, which will lead to the decrease of the gripping force and falling of the work-pieces. In order to avoid the harm to the human body and damage to the equipment, anti-dropping device must be equipped.
- 2. Don't use the air gripper under strong external force and impact force.
- 3. When install and fix the air gripper, avoid falling down, collision and damage.
- 4. When fixing the gripping jaw parts, don't twist the gripping jaw.
- 5. There are several kinds of installation method, and the locking torque of fastening screw must be within the prescribed torque range shown in the below chart. If the locking torque is too large, it will cause the dysfunctional. If the locking torque is too small, it will cause the position deviation and fall.

Tail installation type

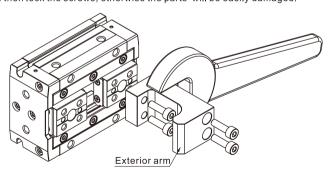

Bore size	The bolts type	Max locking moment(N.m)	Max. screwed depth(mm)
8	M3×0.5	0.95	6
12	M4×0.7	2.2	8
16	M5×0.8	4.5	10
20	M6×1.0	7.8	15
25	M6×1.0	7.8	15

Side installation type


Bore size	The bolts type	Max locking moment(N.m)	Max. screwed depth(mm)
8	M3×0.5	0.63	4
12	M4×0.7	1.5	5
16	M5×0.8	3	5.5
20	M6×1.0	5.2	8
25	M8×1.25	12	10

Bottom installation type

Bore size	The bolts type	Max locking moment(N.m)	Max. screwed depth(mm)
8	M3×0.5	0.63	4
12	M4×0.7	1.5	5
16	M5×0.8	3	5.5
20	M6×1.0	5.2	6
25	M6×1.0	5.2	8


Front installation type

Bore size	The bolts type	Max locking moment(N.m)
8	M2.5×0.45	0.36
12	M3×0.5	0.63
16	M4×0.7	1.5
20	M5×0.8	5
25	M5×0.8	5

7. The installation method of the gripping jaw fittings
When install the gripping jaw fittings, you have to pay particular attention that you can only hold the gripping jaw by using spanner,
and then lock the screws with allen wrench. Never clamp the body directly and then lock the screws, otherwise the parts will be easily damaged.

Bore size	The bolts type	Max. locking moment(N.m)
8	M2.5×0.45	0.36
12	M3×0.5	0.63
16	M4×0.7	1.5
20	M4×0.7	1.5
25	M4×0.7	1.5

